精英家教网 > 高中数学 > 题目详情
设函数F(x)=ex+sinx-ax.
(1)若x=0是F(x)的极值点,求a的值;
(2)若x≥0时,函数y=F(x)的图象恒不在y=F(-x)的图象下方,求实数a的取值范围.
分析:(1)先利用导数公式和导数四则运算计算函数F(x)的导函数F′(x),再利用函数极值的意义,令F′(0)=0即可解得a的值
(2)若x≥0时,函数y=F(x)的图象恒不在y=F(-x)的图象下方,即φ(x)=F(x)-F(-x)≥0在[0,+∞)上恒成立,考虑到φ(0)=0,故通过讨论函数φ(x)的单调性可得a的范围
解答:解:(1)函数F(x)=ex+sinx-ax的导函数F′(x)=ex+cosx-a
∵x=0是F(x)的极值点,∴F′(0)=1+1-a=0
解得a=2
又当a=2时,
x<0时,F′(x)=ex+cosx-2<0,x>0时F′(x)=ex+cosx-2>0
∴x=0是F(x)的极小值点
∴a=2
(2)令φ(x)=F(x)-F(-x)=ex-e-x+2sinx-2ax
则φ′(x)=ex+e-x+2cosx-2a
令S(x)=φ′′(x)=ex-e-x-2sinx
∵S′(x)=ex+e-x-2cosx≥0当x≥0时恒成立
∴函数S(x)在[0,+∞)上单调递增
∴S(x)≥S(0)=0当x≥0时恒成立
∴函数φ′(x)在[0,+∞)上单调递增,
∴φ′(x)≥φ′(0)=4-2a当x≥0时恒成立
当a≤2时,φ′(x)≥0,函数φ(x)在[0,+∞)上单调递增,即φ(x)≥φ(0)=0
故a≤2时,F(x)≥F(-x)恒成立
当a>2时,φ′(0)<0,又∵φ′(x)在[0,+∞)上单调递增
∴总存在x0∈(0,+∞),使得在区间[0,x0)上φ′(x)<0,导致φ(x)在[0,x0)上递减,而φ(0)=0
∴当x∈(0,x0)时,φ(x)<0,这与题意不符,∴a>2不合题意
综上,a的取值范围是(-∞,2]
点评:本题综合考查了导数运算,导数与函数极值间的关系,利用导数研究函数的单调性进而解决不等式恒成立问题,分类讨论的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、设函数f(x)=ex[x2-(1+a)x+1](x∈R),
(I)若曲线y=f(x)在点P(0,f(0))处的切线与直线y=x+4平行.求a的值;
(II)求函数f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+aex(x∈R)是奇函数,则实数a=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex
(I)求证:f(x)≥ex;
(II)记曲线y=f(x)在点P(t,f(t))(其中t<0)处的切线为l,若l与x轴、y轴所围成的三角形面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex(e为自然对数的底数),g(x)=x2-x,记h(x)=f(x)+g(x).
(1)h′(x)为h(x)的导函数,判断函数y=h′(x)的单调性,并加以证明;
(2)若函数y=|h(x)-a|-1=0有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案