设
.
(1)如果
在
处取得最小值
,求
的解析式;
(2)如果
,
的单调递减区间的长度是正整数,试求
和
的值.(注:区间
的长度为
)
科目:高中数学 来源: 题型:
| 27 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011年江西省普通高中招生考试文科数学 题型:解答题
(本小题满分13分)
设
.
(1)如果
在
处取得最小值
,求
的解析式;
(2)如果
,
的单调递减区间的长度是正整数,试求
和
的值.(注:区间
的长度为
)
查看答案和解析>>
科目:高中数学 来源:2014届浙江省温州市十校联合体高三10月测试文科数学试卷(解析版) 题型:解答题
设
(1)如果
在
处取得最小值
,求
的解析式;
(2)如果
,
的单调递减区间的长度是正整数,试求
和
的值.(注:区间
的长度为
)
查看答案和解析>>
科目:高中数学 来源:2011年江西省招生考试文科数学 题型:解答题
(本小题满分13分)
设
.
(1)如果
在
处取得最小值
,求
的解析式;
(2)如果
,
的单调递减区间的长度是正整数,试求
和
的值.(注:区间
的长度为
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com