精英家教网 > 高中数学 > 题目详情

对命题是集合中的元素;为集合中的元素,则为何值时,“”为真?为何值时,“”为真?

同解析


解析:

时,“”为真命题;时“”为真。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:022

对命题p:“1是集合中的元素”,q:“2是集合中的元素”,则a>   时,“p或q”是真命题,a>    时,“p且q”是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

是由满足下列两个条件的函数构成的集合:①方程 有实根; ②函数的导函数满足(1)判断函数是不是集合中的元素,并说明理由;(2)若集合的元素具有以下性质:“设的定义域为,对于任意都存在使得等式成立.”试用这一性质证明:方程只有一个实数根;(3设是方程的实根,求证:对函数定义域中任意,,当,且时, .

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省、二中高三上学期期末联考理科数学卷(解析版) 题型:解答题

已知是由满足下述条件的函数构成的集合:对任意

① 方程有实数根;② 函数的导数满足

(Ⅰ)判断函数是否是集合中的元素,并说明理由;

(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;

(Ⅲ)对任意,且,求证:对于定义域中任意的,当,且时,

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市东城区高三上学期期末考试理科数学试卷(解析版) 题型:解答题

(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足

(Ⅰ)判断函数是否是集合中的元素,并说明理由;

(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;

(Ⅲ)对任意,且,求证:对于定义域中任意的,当,且时,.

 

查看答案和解析>>

同步练习册答案