精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ex
1+ax2
,其中a为正实数,x=
1
2
是f(x)的一个极值点.
(Ⅰ)求a的值;
(Ⅱ)当b>
1
2
时,求函数f(x)在[b,+∞)上的最小值.
f′(x)=
(ax2-2ax+1)ex
(1+ax2)2

(Ⅰ)因为x=
1
2
是函数y=f(x)的一个极值点,
所以f′(
1
2
)=0,
因此,
1
4
a-a+1=0,
解得a=
4
3

经检验,当a=
4
3
时,x=
1
2
是y=f(x)的一个极值点,故所求a的值为
4
3
.…(4分)
(Ⅱ)由(Ⅰ)可知,f′(x)=
(
4
3
x
2
-
8
3
x+1)e
x
(1+
4
3
x
2
)
2

令f′(x)=0,得x1=
1
2
,x2=
3
2

f(x)与f′(x)的变化情况如下:
x (-∞,
1
2
1
2
1
2
3
2
3
2
3
2
,+∞)
f′(x) + 0 - 0 +
f(x)
3
e
4
e
e
4
所以,f(x)的单调递增区间是(-∞,
1
2
),(
3
2
,+∞).单调递减区间是(
1
2
3
2
).
1
2
<b<
3
2
时,f(x)在[b,
3
2
)上单调递减,在(
3
2
,+∞)上单调递增,
所以f(x)在[b,+∞)上的最小值为f(
3
2
)=
e
e
4

当b≥
3
2
时,f(x)在[b,+∞)上单调递增,
所以f(x)在[b,+∞)上的最小值为f(b)=
eb
1+ab2
=
3eb
3+4b2
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在[
1
2
,+∞)
上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-z+log3
1
x
,若实数x0是方程f(x)=0的解,且x1>x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知函数f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的单调区间;
(Ⅱ)是否存在实数k,使得函数f(x)的极大值等于3e-2?若存在,求出k的值;若不存在,请说明理由.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•孝感模拟)已知函数
f(x)=
e-x-1,(x≤0)
|lnx|,(x>0)
,集合M={x|f[f(x)]=1},则M中元素的个数为(  )

查看答案和解析>>

同步练习册答案