精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,点P处的切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为______.
根据题意设P的坐标为(t,-t3+1),且0<t<1,
求导得:y′=-3x2,故切线的斜率k=y′|x=t=-3t2
所以切线方程为:y-(-t3+1)=-3t2(x-t),
令x=0,解得:y=2t3+1;令y=0,解得:x=
2t3+1
3t2

所以△AOB的面积S=
1
2
(2t3+1)•
2t3+1
3t2
=
1
6
(2t2+
1
t
2

设y=2t2+
1
t
=2t2+
1
2t
+
1
2t
≥3
32t2• 
1
2t
1
2t

当且仅当2t2=
1
2t
,即t3=
1
4
,即t=
3
1
4
取等号,
把t=
3
1
4
代入得:Smin=
3
32
4

故答案为:
3
32
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案