精英家教网 > 高中数学 > 题目详情

已知x∈R,f(x)为奇函数,且总有f(2+x)+f(2-x)=0,f(1)=-9,则f(2010)+f(2011)+f(2012)的值为________.

9
分析:由于题意知,f(2+x)=-f(2-x)=f(x-2),得到函数f(x)是以4为周期的奇函数,又由f(2+x)+f(2-x)=0,则若令x=0,则f(2)=0,则f(2010)+f(2011)+f(2012)=f(2)+f(-1)+f(0)=0+9+0=9
解答:由于x∈R,f(x)为奇函数,且总有f(2+x)+f(2-x)=0,
则f(2+x)=-f(2-x)=f(x-2),且若令x=0,则f(2)=0
则函数f(x)是以4为周期的奇函数,
则f(2010)+f(2011)+f(2012)=f(2)+f(-1)+f(0)
又由f(1)=-9,且f(0)=0,则f(2)+f(-1)+f(0)=0+9+0=9
故答案为 9.
点评:此题重点考查递推关系下的函数求值;此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x∈R,f(x)=
20-8x+4x2
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:①函数y=f(x-1)的图象关于点(1,0)对称;②对?x∈R,f(
3
4
-x)=f(
3
4
+x)
成立;③当x∈(-
3
2
,-
3
4
]
时,f(x)=log2(-3x+1),则f(2011)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c(其中b,c为实常数).
(Ⅰ)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为-1,求函数y=f(x)的解析式;
(Ⅱ)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0]?若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+4ax+b-1(a≠0且a,b∈R),不等式|f(x)|≤|2x2+8x-10|恒成立.
(Ⅰ)求证:-5和1是函数f(x)的两个零点;并求实数a,b满足的关系式;
(Ⅱ)求函数f(x)在区间[a,2](a<2)上的最小值g(a);
(Ⅲ)令F(x)=
f(x), x>0
-f(x)  x<0
,若mn<0,m+n>0,试确定F(m)+F(n)的符号,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•河北区一模)已知x∈R,f(x)为奇函数,且总有f(2+x)+f(2-x)=0,f(1)=-9,则f(2010)+f(2011)+f(2012)的值为
9
9

查看答案和解析>>

同步练习册答案