精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足sinA+
3
cosA=2

(1)求A的大小;
(2)现给出三个条件:①a=2; ②c=
3
b
;③B=45°.
试从中选出两个可以确定△ABC的条件,写出你的选择并以此为依据求△ABC的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
分析:(1)把已知等式的左边提取2,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,求出sin(A+
π
3
)的值,由A的范围,得到A+
π
3
的范围,利用特殊角的三角函数值即可求出A的度数;
(2)若选条件①和③,由a及B的度数,及第一问求出的A的度数,利用正弦定理求出b的值,然后由A+B+C=π及诱导公式得到sinC=sin(A+B),利用两角和与差的正弦函数公式化简,把各自的值代入即可求出sinC的值,由a,b及sinC的值,利用三角形的面积公式即可求出三角形ABC的面积;若选条件①和②,由a,c=
3
b及cosA的值,利用余弦定理列出关于b的方程,求出方程的解得到b的值,进而求出c的值,由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积;若选条件②和③,根据正弦定理得到sinC大于1,不成立.故前两种情况选择一种方案即可.
解答:解:(1)依题意得:sinA+
3
cosA=2(
1
2
sinA+
3
2
cosA)=2sin(A+
π
3
)=2,
sin(A+
π
3
)=1
,(3分)
∵0<A<π,
π
3
<A+
π
3
3

A+
π
3
=
π
2

A=
π
6
;(5分)
(2)方案一:选条件①和②,(6分)
由正弦定理
a
sinA
=
b
sinB
,得b=
a
sinA
sinB=2
2
,(8分)
∵A+B+C=π,∴sinC=sin(A+B)=sinAcosB+cosAsinB=
2
+
6
4
,(11分)
S=
1
2
absinC=
1
2
×2×2
2
×
2
+
6
4
=
3
+1
.(13分)
方案二:选条件①和③,(6分)
由余弦定理b2+c2-2bccosA=a2,有b2+3b2-3b2=4,则b=2,c=2
3
,(10分)
所以S=
1
2
bcsinA=
1
2
×2×2
3
×
1
2
=
3
.(13分)
说明:若选条件②和③,由c=
3
b
得,sinC=
3
sinB=
6
2
>1
,不成立,这样的三角形不存在.
点评:此题考查了两角和与差的正弦函数公式,正弦定理,余弦定理,诱导公式以及三角形的面积公式,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案