精英家教网 > 高中数学 > 题目详情

求与圆关于直线对称的圆的方程.

答案:略
解析:

解:把圆的方程化成标准形式,得

圆心坐标是

设与圆心关于直线对称的点的坐标是,则有

解此方程组,得

所以,与圆关于直线对称的圆的方程是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(1,
178
)且它的一个方向向量为(4,-7),又圆C1:(x+3)2+(y-1)2=4与圆C2关于直线l对称.
(Ⅰ)求直线l和圆C2的方程;
(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试示所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源:陕西省2009届高三教学质量检测模拟试题(一)、数学 题型:044

已知二次函数满足以下条件:

①图像关于直线x=对称;②f(1)=0;③其图像可由y=x2-1平移得到.

(Ⅰ)求y=f(x)表达式;

(Ⅱ)若数列{an},{bn}对任意的实数x都满足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(x)是定义在实数集R上的一个函数,求数列{an},{bn}的通项公式.

(Ⅲ)设圆Cn:(x-an)2+(y-bn)2,(n∈N*),若圆Cn与圆Cn+1外切,且{rn}是各项都为正数的等比数列,求数列{rn}的公比q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬大附中高二(上)期中数学试卷(解析版) 题型:解答题

在平面直角坐标系xoy中,已知直线l:8x+6y+1=0,圆C1:x2+y2+8x-2y+13=0,圆C2:x2+y2+8tx-8y+16t+12=0.
(1)当t=-1时,试判断圆C1与圆C2的位置关系,并说明理由;
(2)若圆C1与圆C2关于直线l对称,求t的值;
(3)在(2)的条件下,若P(a,b)为平面上的点,是否存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1与圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在,求点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案