精英家教网 > 高中数学 > 题目详情
函数y=
-x2+4x+5
的单调递减区间为(  )
分析:根据偶次被开方数不小于0,我们可以求出函数y=
-x2+4x+5
的定义域,进而根据幂函数的单调性,二次函数的单调性,及复合函数单调性“同增异减”的原则,即可求出函数y=
-x2+4x+5
的单调递减区间.
解答:解:∵函数y=
-x2+4x+5
的定义域为[-1,5]
函数y=
u
为增函数
函数u=-x2+4x+5在[2,5]上为减函数
故函数y=
-x2+4x+5
的单调递减区间为[2,5]
故选D
点评:本题考查的知识点是函数的单调性及单调区间,幂函数的单调性,二次函数的单调性,及复合函数单调性,其中复合函数单调性“同增异减”的原则,是解答此类问题的关键,其中本题解答时易忽略函数的定义域为[-1,5],而错解为C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、使函数y=x2-4x+5具有反函数的一个条件是
x≥2
.(只填上一个条件即可,不必考虑所有情形).

查看答案和解析>>

科目:高中数学 来源: 题型:

13、函数y=x2-4x,其中x∈[-3,3],则该函数的值域为
[-4,21]

查看答案和解析>>

科目:高中数学 来源: 题型:

2、函数y=x2-4x+1,x∈[1,5]的值域是
[-3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=-x2+4x+5
(1)配成顶点式:y=-x2+4x+5=-(…)2+(…)
(2)画出二次函数y=-x2+4x+5的图象
(3)根据二次函数的图象写出-x2+4x+5≥0的解集
{x|-1≤x≤5}
{x|-1≤x≤5}
根据二次函数的图象写出-x2+4x+5<0的解集
{x|x<-1或x>5}
{x|x<-1或x>5}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
-x2+4x-3
+3
x+1
的值域为
[
9-
17
8
9+
17
8
]
[
9-
17
8
9+
17
8
]

查看答案和解析>>

同步练习册答案