精英家教网 > 高中数学 > 题目详情
记函数f(x)=
1
(x+1)(2-x)
的定义域为A,g(x)=log3[(x-m-2)(x-m)]的定义域为B.
(1)求A;
(2)若A⊆B,求实数m的取值范围.
(1)由(2-x) (x+1)>0,
得-1<x<2,
即A=(-1,2).(6分)
(2)由(x-m-2)(x-m)>0,
得B=(-∞,m)∪(m+2,+∞),(10分)
∵A⊆B,
∴m≥2或m+2≤-1,
即m≥2或m≤-3,
故当B⊆A时,
实数a的取值范围是(-∞,-3]∪[2,+∞).(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=
x2-2
(x≥2)
的导数为g′(x)=
x
x2-2
(x≥2)
,记函数f(x)=x-kg(x)(x≥2,k为常数).
(1)若函数f(x)在区间(2,+∞)上为减函数,求k的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=log2(2x-3)的定义域为集合M,函数g(x)=
1
(x-3)(x-1)
的定义域为集合N.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,CR(M∪N).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区二模)已知函数f(x)=aln(x-a)-
1
2
x2+x(a<0)

(I)当-1<a<0时,求f(x)的单调区间;
(II)若-1<a<2(ln2-1),求证:函数f(x)只有一个零点x0,且a+1<x0<a+2;
(III)当a=-
4
5
时,记函数f(x)的零点为x0,若对任意x1,x2∈[0,x0]且x2-x1=1,都有|f(x2)-f(x1)|≥m成立,求实数m的最大值.
(本题可参考数据:ln2=0.7,ln
9
4
=0.8
ln
9
5
=0.59

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)记函数f(x)=
1
(x+1)(2-x)
的定义域为A,g(x)=log3[(x-m-2)(x-m)]的定义域为B.
(1)求A;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案