精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
2
ax2
-2x(a≠0).
(1)讨论函数f(x)的单调性;
(2)设函数f(x)有极值点x0,证明:f(x0)≤-
3
2

(3)若方程f(x)=3有两个不相等的实根x1,x2,且x1<x2,证明:f'(
x1+x2
2
)≠0.(f'(x)为f(x)的导函数)
(1)f′(x)=
1
x
-ax-2=-
ax2+2x-1
x

若a≤-1时,则f′(x)≥0,∴f(x)在(0,+∞)上是增函数.
若-1<a<0时,则f(x)在(0,
-1+
1+a
a
),(
-1-
1+a
a
(
-1+
1+a
a
+∞)上是增函数,在(
-1+
1+a
a
-1-
1+a
a
)上是减函数.
若a>0时,则f(x)在(0,
-1+
1+a
a
)上是增函数,在(
-1+
1+a
a
,+∞)上是减函数.…(4分)
(2)由f′(x0)=
1
x0
-ax0-2=-
ax02+2x0-1
x0
=0得:ax02=1-2x0
∴f(x0)=lnx0-
1
2
(1-2x0)-2x0=lnx0-x0-
1
2

设φ(x)=lnx-x-
1
2
,x∈(0,1)时,φ
(x)>0.
当x∈(1,+∞)时,φ′(x)<0.
∴φ(x)的最大值为φ(1)=-
3
2
.于是:f(x0)≤φ(1)=-
3
2
.--------(9分)
(3)若f′(
x1+x2
2
)=0,则
2
x1+x2
-a
x1+x2
2
-2=0.
∵lnx1-
1
2
ax12-2x1=3,lnx2-
1
2
ax22-2x2
=3.∴ln
x2
x1
=
a
2
(x22-x12)+2(x2-x1)=(x2-x1)[
a
2
(x2+x1)+2]=(x2-x1)
2
x2+x1
=
2(1-
x2
x1
)
1+
x2
x1

x2
x1
=t,则t>1.设H(t)=lnt-
2(1-t)
1+t

∴H′(t)=
1
t
+
4
(1+t)2
>0∴H(t)>H(1)=0
故∴
2(1-
x2
x1
)
1+
x2
x1
≠ln
x2
x1
,即f′(
x1+x2
2
)≠0-----(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案