精英家教网 > 高中数学 > 题目详情
设等差数列{an}的各项均为整数,其公差d≠0,a5=6.
(Ⅰ)若a2•a10>0,求d的值;
(Ⅱ)若a3=2,且a3a5an1an2,…,ant,…(5<n1<n2<…<nt<…)成等比数列,求nt
(Ⅲ)若a3a5an1an2,…,ant,…(5<n1<n2<…<nt<…)成等比数列,求n1的取值集合.
(Ⅰ)因为等差数列{an}的各项均为整数,所以d∈Z.(1分)
由a2•a10>0,得(a5-3d)(a5+5d)>0,即(3d-6)(5d+6)<0,解得-
6
5
<d<2

注意到d∈Z,且d≠0,所以d=-1,或d=1.(3分)
(Ⅱ)由a3=2,a5=6,得d=
a5-a3
5-3
=2

从而an=a3+(n-3)d=2+(n-3)×2=2n-4,故ant=2nt-4.(5分)
a3a5an1an2,,ant,成等比数列,得此等比数列的公比为
a5
a3
=3

从而ant=a33t+1=2•3t+1.
由2nt-4=2•3t+1,解得nt=3t+1+2,t=1,2,3,.(7分)
(Ⅲ)由d=
a5-a3
5-3
=
6-a3
2
,得an1=a3+(n1-3)d=a3+
(n1-3)(6-a3)
2

a3a5an1an2,,ant,成等比数列,得an1=
a25
a3
=
36
a3

a3+
(n1-3)(6-a3)
2
=
36
a3
,化简整理得n1=5+
12
a3
.
(9分)
因为n1>5,从而a3>0,
又n1∈Z且d≠0,从而a3是12的非6的正约数,故a3=1,2,3,4,12.(10分)
①当a3=1或a3=3时,a4=
a3+a5
2
∉Z

这与{an}的各项均为整数相矛盾,所以,a3≠1且a3≠3.(11分)
②当a3=4时,由
a25
=a3an1?an1=9

但此时an2=
a2n1
a5
∉Z
,这与{an}的各项均为整数相矛盾,所以,a3≠4.(12分)
③当a3=12时,同理可检验an2∉Z,所以,a3≠12.(13分)
当a3=2时,由(Ⅱ)知符合题意.
综上,n1的取值只能是n1=11,即n1的取值集合是{11}.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案