精英家教网 > 高中数学 > 题目详情

已知f(x)是R上的奇函数,且f(数学公式+x)=f(数学公式-x),当0≤x≤3时,f(x)=x+sinx,则f(2010)=________.

0
分析:由已知f(x)是R上的奇函数,且f(+x)=f(-x),我们易得f(x)是周期函数,且周期为6,则由当0≤x≤3时,f(x)=x+sinx,我们不难得到一个周期内函数f(x)的解析式,然后根据周期性解决问题.
解答:∵f(x)是R上的奇函数
且当0≤x≤3时,f(x)=x+sinx
∴当-3≤x≤3时,f(x)=x+sinx
又∵f(+x)=f(-x),
故函数f(x)是T=6的周期函数
则f(2010)=f(0)=0
故答案为:0
点评:若函数f(x)的图象关于(a,0)点对称,又关于直线x=b对称,则函数一定为周期函数且T=4|a-b|.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知f(x)是R上的偶函数,f(2)=-1,若f(x)的图象向右平移1个单位长度,得到一个奇函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零点,比较f(a),f(-2),f(1.5)的大小,用小于符号连接为
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,当x≥0时,f(x)=
x

(1)求当x<0时,f(x)的表达式
(2)判断f(x)在区间(0,+∞)的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(-1)=2,则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①命题“已知f(x)是R上的减函数,若a+b≥0,则f(a)+f(b)≤f(-a)+f(-b)”的逆否命题为真命题;
②若p或q为真命题,则p、q均为真命题;
③若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要条件.
其中正确的是(  )

查看答案和解析>>

同步练习册答案