精英家教网 > 高中数学 > 题目详情
选做题
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,
AF=AB=BC=FE=AD=1.
(1)求异面直线BF与DE所成的角的大小;
(2)求二面角A﹣CD﹣E的余弦值.
解:(1)由题设知,BF∥CE,
所以∠CED(或其补角)为异面直线BF与DE所成的角.
设P为AD的中点,连接EP,PC.
因为FE=∥AP,
所以FA=∥EP,同理AB=∥PC.
又FA⊥平面ABCD,所以EP⊥平面ABCD.
而PC,AD都在平面ABCD内,
故EP⊥PC,EP⊥AD.
由AB⊥AD,可得PC⊥AD
设FA=a,则EP=PC=PD=a,CD=DE=EC= a,
故∠CED=60°.
所以异面直线BF与DE所成的角的大小为60°.
(2)取CD的中点Q,连接PQ,EQ
由PC=PD,CE=DE
∴PQ⊥CD,EQ⊥CD
∴∠EQP为二面角A﹣CD﹣E的平面角,
由ED=CD= a,
在等边△ECD中EQ= a
在等腰Rt△CPD中,PQ= a
在Rt△EPQ中,cos∠EQP= 
故二面角A﹣CD﹣E的余弦值为 
练习册系列答案
相关习题

同步练习册答案