精英家教网 > 高中数学 > 题目详情

设斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(   )

    A.               B.             C.             D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率为1的直L与椭C交于A(x1,y1)B(x2,y2)两点.
(Ⅰ)若椭圆的离心率e=
3
2
,直线l过点M(b,0),且
OA
OB
=-
12
5
,求椭圆C的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP
=λ(
OA
+
OB
)(λ>0),若点P在椭C上,λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆C的方程数学公式,斜率为1的直L与椭C交于A(x1,y1)B(x2,y2)两点.
(Ⅰ)若椭圆的离心率数学公式,直线l过点M(b,0),且数学公式,求椭圆C的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量数学公式=λ(数学公式+数学公式)(λ>0),若点P在椭C上,λ的取值范围.

查看答案和解析>>

同步练习册答案