精英家教网 > 高中数学 > 题目详情

如图在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,过D与PB垂直的平面分别交PB、PC于F、E.PD=DC.
(1)求证:DE⊥PC
(2)求证:PA∥平面EDB;
(3)求二面角C-PB-D的大小.

解:(1)证明:∵PB⊥平面DEF∴PB⊥DE
又∵PD⊥平面ABCD
又∵BC⊥DC∴BC⊥面PDC
∴DE?平面PDC∴BC⊥DE
从而DE⊥平面PBC
∴DE⊥PC
(2)证明:连AC交BD于O,则O为AC的中点,
∴E为PC的中点,
∴EO∥PA
又∵PA?平面EDBEO?平面EDB,
∴PA∥平面EDB
(3)设PD=DC=1,∵在四棱锥P-ABCD中,底面ABCD是正方形,
∴AB=BC=CD=DA=1,BD=
以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,
则D(0,0,0),B(1,1,0),P(0,0,1),C(0,1,0),

设面PBD的法向量为,则,∴
设面PBC的法向量为,则,∴
设二面角C-PB-D的平面角为θ,则cosθ=,θ=60°,
∴二面角C-PB-D的大小为60°.
分析:(1)由PB⊥平面DEF,知PB⊥DE,由PD⊥平面ABCD,BC⊥DC,知BC⊥面PDC.由此能够证明DE⊥PC.
(2)连AC交BD于O,则O为AC的中点,E为PC的中点,EO∥PA.由PA?平面EDBEO?平面EDB,知PA∥平面EDB.
(3)设PD=DC=a,取DC的中点H,作HG∥CO交BD于G,则HG⊥DB,EH∥PD,EH⊥平面CDB.由三垂线定理知EG⊥BD,故∠EGH为二面角E-BD-C的一个二面角.由此能求出二面角E-BD-C的正切值.
点评:本题考查立体几何问题的综合应用,难度较大.解题时要认真审题,仔细观察,注意合理地进行等价转化,把立体问题转化为平面问题进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图在四棱锥P-ABCD中,底ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F、G分别为AD、PC、PD的中点.
(1)求证:FG∥面ABCD
(2)求面BEF与面BAP夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点;PA=kAB(k>0),且二面角E-BD-C的平面角大于30°,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD为直角梯形.其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点
①若CD∥平面PBO 试指出O的位置并说明理由
②求证平面PAB⊥平面PCD
③若PD=BC=1,AB=2
2
,求P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,侧棱PD⊥平面ABCD,M,N分别是AB,PC的中点,底面ABCD是菱形,
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=1,点M,N分别是PD,PB的中点.
(I)求证:PB∥平面ACM;
(II)求证:MN⊥平面PAC;
(III)若
PF
=2
FC
,求平面FMN与平面ABCD所成二面角的余弦值.

查看答案和解析>>

同步练习册答案