精英家教网 > 高中数学 > 题目详情
若a>2b>0,则下列不等式:①
1
a-2b
1
b
;②
1
a-b
1
b
;③
1
a-2b
1
b
;④
1
a-b
1
b
.其中结论成立的序号为______.
①∵a>2b>0,∴a-2b>0,b>0.∴
1
a-2b
1
b
?b<a-2b,即a>3b,不一定成立;
②∵a>2b>0,∴a-b>b>0,∴
a-b
b(a-b)
b
b(a-b)
,化为
1
b
1
a-b
,因此②成立;
③∵a>2b>0,∴a-2b>0,b>0,但是可能a-2b>b>0,或b>a-2b>0,或a-2b=b>0,因此③不一定成立;
④∵②正确,∴④一定不正确.
综上可知:只有②正确.
故答案为②.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把函数f(x)=x3-3x的图象C1向右平移u个单位长度,再向下平移v个单位长度后得到图象C2、若对任意的u>0,曲线C1与C2至多只有一个交点,则v的最小值为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于点(a,b)对称,则有f(x)+f(2a-x)=2b对任意定义域内的x均成立.
(1)若函数f(x)=
x2+mx+mx
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)=-x2+nx+1(x>0)在(1)的条件下,若对实数x>0及t>0时恒有不等式g(x)<f(t)成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省兰州一中高三(上)期中数学试卷(文科)(解析版) 题型:选择题

把函数f(x)=x3-3x的图象C1向右平移u个单位长度,再向下平移v个单位长度后得到图象C2、若对任意的u>0,曲线C1与C2至多只有一个交点,则v的最小值为( )
A.2
B.4
C.6
D.8

查看答案和解析>>

同步练习册答案