精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求
1
S1
+
1
S2
+…+
1
Sn
分析:利用等差数列的求和公式求出Sn,再利用裂项法可求数列的和.
解答:解:∵等差数列{an}的首项a1=3,公差d=2,
∴前n项和Sn=na1+
n(n-1)
2
d=3n+
n(n-1)
2
×2=n2+2n(n∈N*)

1
Sn
=
1
n2+2n
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

1
S1
+
1
S2
+…+
1
Sn
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
3
4
-
2n+3
2(n+1)(n+2)
点评:本题考查数列的求和,考查裂项法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案