精英家教网 > 高中数学 > 题目详情

设数列的前项和为,对任意的,都有,且;数列满足.

(Ⅰ)求的值及数列的通项公式;

(Ⅱ)求证:对一切成立.

 

【答案】

(1) ;(2)利用数列求和及放缩法证明不等式成立

【解析】

试题分析:(1)

,相减得:

,即

同理,两式再减  5分

(2),

一般地,,则

,数列是公比为2的等比数列,得:

所以:

而当时,,故

,从而

                   12分

考点:本题考查了数列的通项及求和

点评:数列的通项公式及应用是数列的重点内容,数列的大题对逻辑推理能力有较高的要求,在数列中突出考查学生的理性思维,这是近几年新课标高考对数列考查的一个亮点,也是一种趋势.随着新课标实施的深入,高考关注的重点为等差、等比数列的通项公式,错位相减法、裂项相消法等求数列的前n项的和等等

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年朝阳区综合练习一文)(14分)

设数列的前项和为,对一切,点在函数的图象上.

(Ⅰ)求的表达式;

(Ⅱ)将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;

(Ⅲ)设为数列的前项积,是否存在实数,使得不等式对一切都成立?若存在,求出的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(Ⅰ)求数列与数列的通项公式;

(Ⅱ)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由;

(Ⅲ)记,设数列的前项和为,求证:对任意正整数都有

查看答案和解析>>

科目:高中数学 来源:2009高考真题汇编3-数列 题型:解答题

(本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记
(Ⅰ)求数列的通项公式;
(Ⅱ)记,设数列的前项和为,求证:对任意正整数都有
(Ⅲ)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期期末考试数学文卷 题型:解答题

(本题满分12分)设数列的前项和为,对,都有成立,

(Ⅰ) 求数列的通项公式;

(Ⅱ)设数列,试求数列的前项和.

 

 

查看答案和解析>>

科目:高中数学 来源:江苏省扬州中学09-10学年高二下学期期中考试(文科) 题型:解答题

设数列的前项和为,对一切,点在函数的图象上.
(1)求a1a2a3值,并求的表达式;
(2)将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内所有项之和,并设由这些和按原来括号的前后顺序构成的数列为,求的值;w*w^w.k&s#5@u.c~o*m
(3)设为数列的前项积,是否存在实数,使得不等式对一切都成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案