精英家教网 > 高中数学 > 题目详情

判断直线与圆的位置关系.如果相交,求出交点坐标.

直线与圆相切


解析:

因为圆心到直线的距离是

           

而圆的半径长是,所以直线与圆相切.

圆心与切点连线所得直线的方程为

解方程组

切点坐标是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R.
(I)直线l是否过定点,有则求出来?判断直线与圆的位置关系及理由?
(II)求直线被圆C截得的弦长L的取值范围及L最短时弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R
(1)直线l是否过定点,有则求出来?判断直线与圆的位置关系及理由?
(2)求直线被圆C截得的弦长最小时l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省高二下学期期末考试文科数学卷(解析版) 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.

(1)求的值及直线的直角坐标方程;

(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.

 

查看答案和解析>>

同步练习册答案