精英家教网 > 高中数学 > 题目详情
设数列{an}前n项和为Sn,若a1=1,Sn=nan-
3
2
n(n-1)
.n=1,2,3,…
(1)求数列{an}的通项公式.
(2)若bn=
1
anan+1
,数列{bn}前n项和为Tn,证明:
1
4
Tn
1
3

(3)是否存在自然数n,使S1+
S2
2
+
S3
3
+…+
Sn
n
=63
.若存在,求出n的值;若不存在,说明理由.
分析:(1)已知Sn,利用an=
S1,n=1
Sn-Sn-1,n≥2
求an
(2)由(1)知bn=
1
(3n-2)(3n+1)
 =
1
3
(
1
3n-2
-
1
3n+1
),利用裂项求和可得Tn=
n
3n+1
=
1
3
(1-
1
3n+1
)
,结合数列的单调性可知答案,
(3)存在性问题,假设存在符合条件的n,由(1)知Sn=
3n2
2
-
n
2
 ,
Sn
n
=
3n
2
-
1
2
s1
1
+
s2
2
+…+
Sn
n
=
3n2+n
4

S1
1
+
S2
2
+…+ 
Sn
n
= 63
,即63
3n2+n
4
=63,解得n的值.
解答:解:(1)当n≥2时,Sn-1=(n-1)an-1-
3
2
(n-1)(n-2)

an=Sn-Sn-1=nan-(n-1)an-1-
3
2
n(n-1)+
3
2
(n-1)(n-2)

(n-1)an-(n-1)an-1-
3
2
(n-1)[n-(n-2)]=0

∴(n-1)an-(n-1)an-1-3(n-1)=0
∵an-an-1=3,∴an=1+(n-1)•3=3n-2.

(2)bn=
1
(3n-2)(3n+1)
=
1
3
[
1
3n-2
-
1
3n+1
]

Tn=
1
3
[1-
1
4
+
1
4
-
1
7
+
1
7
-
1
10
++
1
3n-2
-
1
3n+1
]=
1
3
[1-
1
3n+1
]

∵Tn单调递增∴TnT1=
1
3
[1-
1
4
]=
1
4

又∵
1
3n+1
>0
,∴Tn
1
3
,综上
1
4
Tn
1
3

(3)∵
Sn
n
±
n+(n-1)•3
n
=1+
3
2
(n-1)=
3
2
n-
1
2

S1+
S2
2
++
Sn
n
=n+
n(n-1)
2
3
2
=
3n2+n
4
,∴
3n2+n
x
=63
,∴n=9.
点评:(1)由Sn求an,易漏对n=1的检验(2)主要考查裂项求和(3)存在性问题首先假设n存在,若找出n的值,即存在,若推出矛盾,则不存在n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an} 前n项和Sn=
n(an+1)2
,n∈N*且a2=a

(1)求数列{an} 的通项公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和Sn,且Sn=2an-2,n∈N+
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设cn=
nan
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且b1=a1bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通项公式;
(3)若m=1时,设Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整数k,使得对任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,已知a1=a(a≠4),an+1=2Sn+4n(n∈N*
(Ⅰ)设b n=Sn-4n,求证:数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若an+1≥an(n∈N*),求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}前n项和为Sn,首项为x(x∈R),满足Sn=nan-
n(n-1)2
,n∈N+
(1)求证:数列{an}为等差数列;
(2)求证:若数列{an}中存在三项构成等比数列,则x为有理数.

查看答案和解析>>

同步练习册答案