精英家教网 > 高中数学 > 题目详情

如图,中,,若的外心,则             .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若AD=2,当PC与平面ABCD所成角的正切值为
2
2
时,求四棱锥P-ABCD的外接球表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是随机的.已知圆形靶中三个圆为同心圆,半径分别为30cm、20cm、10cm,飞镖落在不同区域的环数如图中标示.
(1)若这位同学向圆形靶投掷3次飞镖,求恰有2次落在9环区域内的概率;
(2)记这位同学投掷一次得到的环数为随机变量X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F为DE的中点,求证:BE∥平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值;
(Ⅲ)如果四棱锥E-ABCD有外接球,求出四棱锥E-ABCD外接球的半径,没有的话请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,D是AB中点,E是AC的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(1)求异面直线AB与DE所成的角;
(2)若M,N分别为棱AC,BC上的动点,求△DMN周长的平方的最小值;
(3)在三棱锥D-ABC的外接球面上,求A,B两点间的球面距离和外接球体积.

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高一下学期期中考试数学试卷(解析版) 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

同步练习册答案