精英家教网 > 高中数学 > 题目详情

求过点P(3,6)与圆(x+2)2+(y-2)2=25相切的直线方程.

答案:
解析:

  解:∵圆心为(-2,2) ∴|OP|=5则P在圆上,且切线的斜率存在.

  设切线方程为

  由


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+D1x+8y-8=0,圆C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圆C1与圆C2的公共弦所在的直线l1的方程;
(2)在(1)的条件下,已知P(-3,m)是直线l1上一点,过点P分别作直线与圆C1、圆C2相切,切点为A、B,求证:|PA|=|PB|;
(3)将圆C1、圆C2的方程相减得一直线l2:(D1-D2)x+12y-6=0.Q是直线l2上,且在圆C1、圆C2外部的任意一点.过点Q分别作直线QM、QN与圆C1、圆C2相切,切点为M、N,试探究|QM|与|QN|的关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图象过点P(3,-6);②函数f(x)在x1、x2处取得极值,且|x1-x2|=4;③函数y=f(x-1)的图象关于点(1,0)对称.
(1)求f(x)的表达式;
(2)若α,β∈R,求证:|f(2cosα)-f(2sinβ)|≤
643

(3)求过点P(3,-6)与函数f(x)的图象相切的直线方程.

查看答案和解析>>

科目:高中数学 来源:泰州市2006~2007学年度第一学期期末联考高3数学试题 题型:044

设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图象过点P(3,-6);②函数f(x)在x1、x2处取得极值,且|x1-x2|=4;③函数y=f(x-1)的图象关于点(1,0)对称.

(1)求f(x)的表达式;

(2)若α,β∈R,求证:

(3)求过点P(3,-6)与函数f(x)的图象相切的直线方程.

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高二下学期期末考试理科数学卷 题型:解答题

设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图像过点P(3,-6);②函数f(x)在x1,x2处取极值,且|x1-x2|=4;③函数y=f(x-1)的图像关于点(1,0)对称。(1)求f(x)的表达式;(2)若α,β∈R,求证;(3)求过点P(3,-6)与函数f(x)的图像相切的直线方程。(12分)         

 

查看答案和解析>>

同步练习册答案