精英家教网 > 高中数学 > 题目详情

设20<a<34,24<b<60,求a+b、b-a及的范围.

答案:
解析:

  解:由已知20<a<34,24<b<60,

  可得44<a+b<94,-60<-b<-24,

  故-40<a-b<10.又∵24<b<60,可得

  ∴,即

  思路解析:本题关键是求出-b与的范围,然后只要利用同向不等式的可加性及两边都是正数的同向不等式的可乘性,问题即可得到解决.


提示:

解决此类问题的关键是正确运用不等式的基本性质,如同向不等式可以相加(注意千万不能相减),非负的同向不等式可以相乘.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省齐齐哈尔市高三二模理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表

摸球总次数

10

20

30

60

90

120

180

240

330

450

“和为7”出现的频数

1

9

14

24

26

37

58

82

109

150

“和为7”出现的频率

0.10

0.45

0.47

0.40

0.29

0.31

0.32

0.34

0.33

0.33

(参考数据:

(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求的值;

(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量元,求的数学期望和方差。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)(解析版) 题型:选择题

设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为( )
A.[-2,6]
B.[-20,34]
C.[-22,32]
D.[-24,28]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西师大附中、临川一中高三(上)8月联考数学试卷(文科)(解析版) 题型:选择题

设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为( )
A.[-2,6]
B.[-20,34]
C.[-22,32]
D.[-24,28]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)(解析版) 题型:选择题

设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-12,12]上的值域为( )
A.[-2,6]
B.[-20,34]
C.[-22,32]
D.[-24,28]

查看答案和解析>>

同步练习册答案