精英家教网 > 高中数学 > 题目详情
f(x)=
x2        ,x>0
π
0       ,x<0
,x=0
,则f{f[f(-3)]}等于(  )
分析:应从内到外逐层求解,计算时要充分考虑自变量的范围.根据不同的范围代不同的解析式.
解答:解:由题可知:∵-3<0,∴f(-3)=0,
∴f[f(-3)]=f(0)=π>0,
∴f{f[f(-3)]}=f(π)=π2
故选C
点评:本题考查的是分段函数求值问题.在解答的过程当中充分体现了复合函数的思想、问题转化的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-2ax+b|.x∈R,给出四个命题:
①f(x)必是偶函数;
②若f(0)=f(2),则f(x)的图象关于直线x=1对称;
③若a2-b≤0,则f(x)在[a,+∞)上是增函数;
④f(x)有最小值|a2-b|;⑤对任意x都有f(a-x)=f(a+x);
其中正确命题的序号是
③⑤
③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知f(x)=x,g(x)=
1
x
,x∈[1,10]
的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)当f(x)的定义域为数学公式时,求f(x)的值域;
(2)试问对定义域内的任意x,f(2a-x)+f(x)的值是否为一个定值?若是,求出这个定值;若不是,说明理由;
(3)设函数g(x)=x2+|(x-a)f(x)|,若数学公式,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),试证明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②对任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案