精英家教网 > 高中数学 > 题目详情
已知{an} 为等比数列,a4+a7=2,a5a6=-8,则a1+a10=(  )
A.7B.5C.-5D.-7
∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=-8
∴a4=4,a7=-2或a4=-2,a7=4
当a4=4,a7=-2时,q3=-
1
2

∴a1=-8,a10=1,
∴a1+a10=-7
当a4=-2,a7=4时,q3=-2,则a10=-8,a1=1
∴a1+a10=-7
综上可得,a1+a10=-7
故选D
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}为等比数例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足
an+2
an+1
-
an+1
an
=k(k为常数),则称{an}为等比差数列,k叫公比差.已知{an} 是以2为公比差的等比差数列,其中a1=1,a2=2,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N*,则S10的值为(  )
A、-110B、-90C、90D、110

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,求数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,则S10为(  )

查看答案和解析>>

同步练习册答案