精英家教网 > 高中数学 > 题目详情

已知函数数学公式,其中a是大于0的常数
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

解:(1)由得,
解得a>1时,定义域为(0,+∞)
a=1时,定义域为{x|x>0且x≠1},
0<a<1时,定义域为}
(2)设,当a∈(1,4),x∈[2,+∞)时,
恒成立,
在[2,+∞)上是增函数,
在[2,+∞)上是增函数,
在[2,+∞)上的最小值为
(3)对任意x∈[2,+∞)恒有f(x)>0,
对x∈[2,+∞)恒成立
∴a>3x-x2,而在x∈[2,+∞)上是减函数,
∴h(x)max=h(2)=2,∴a>2
分析:(1)求函数f(x)的定义域,就是)求,可以通过对a分类讨论解决;
(2)可以构造函数,当a∈(1,4)时通过导数法研究g(x)在[2,+∞)上的单调性,再利用复合函数的性质可以求得f(x)在[2,+∞)上的最小值;
(3)对任意x∈[2,+∞)恒有f(x)>0,即对x∈[2,+∞)恒成立,转化为a是x的函数,即可求得a的取值范围.
点评:本题考查函数恒成立问题,(1)着重考查分类讨论思想;(2)着重考查复合函数的函数单调性质求最值,方法为导数法;(3)着重考查分离参数法,是一道好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数(其中A、B、是实数,且)的最小正周期是2,且当时,取得最大值2;

  (1)、求函数的表达式;

  (2)、在闭区间上是否存在的对称轴?如果存在,求出其对称轴的方程,

        若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省七校高三上学期第一次联考理科数学试卷(解析版) 题型:解答题

已知函数,其中a>0.

(Ⅰ)求函数的单调区间;

(Ⅱ)若直线是曲线的切线,求实数a的值;

(Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市晋江市季延中学高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区北师特学校高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:2013年中国人民大学附中高考数学冲刺试卷06(理科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)

查看答案和解析>>

同步练习册答案