精英家教网 > 高中数学 > 题目详情
已知数列{an}中,,当n≥2时,3an+1=4an-an-1(n∈N*),
(Ⅰ)证明:{an+1-an}为等比数列;
(Ⅱ)求数列{an}的通项;
(Ⅲ)若对任意n∈N*有λa1a2a3…an≥1(λ∈N*)均成立,求λ的最小值。

(Ⅰ)证明:∵数列{an}中,
当n≥2时,3an+1=4an-an-1(n∈N*),
∴当n≥2时,

所以,是以为首项,以为公比的等比数列。
(Ⅱ)解:由(Ⅰ)知,


累加,得
所以,
 (Ⅲ)解:若对任意n∈N*有λa1a2a3…an≥1(λ∈N*)均成立,
在n∈N*时恒成立,
故需求在n∈N*上的最小值,
先证n∈N*时有
显然,左边每个因式都是正数,先证明对每个n∈N*,有

用数学归纳法证明上式,
(ⅰ)n=1时,上式显然成立;
(ⅱ)假设n=k时,结论成立,

则当n=k+1时,


即当n=k+1时,结论也成立;
故对一切n∈N*,
成立,
所以,




易知

在n∈N*时恒成立且λ∈N*,
所以,λ的最小值为2。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案