精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,P为椭圆C上的一点,且
PF1
PF2
,若△PF1F2的面积为9,则b的值为(  )
分析:由椭圆的定义知|PF1| +|PF2| =2a①,依题意,|PF1|2+|PF2|2=4c2,②对①式两端平方后与②联立可得|PF1| |PF2| ,再由△PF1F2的面积为9,即可求得b的值.
解答:解:∵|PF1| +|PF2| =2a,
|PF1|2+|PF2|2+2|PF1| |PF2| =4a2;①
PF1
PF2

|PF1|2+|PF2|2=|F1F2|2=4c2,②
∴①-②得:2|PF1| |PF2| =4(a2-c2)=4b2
1
2
|PF1| |PF2| =b2
∵△PF1F2的面积为9,
SPF1F2=
1
2
|PF1| |PF2| =b2=9,b>0,
∴b=3.
故选A.
点评:本题考查椭圆的简单性质,考查数量积判断两个平面向量的垂直关系,考查化归思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案