精英家教网 > 高中数学 > 题目详情
(2013•乌鲁木齐一模)函数f(x)=log2(1+x),g(x)=log2(1-x),则f(x)-g(x)是(  )
分析:根据已知中函数的解析式,求出函数的定义域,判断其是否关于原点对称,记F(x)=f(x)-g(x)再判断F(x)与F(-x)的关系,进而根据函数奇偶性的定义,得到答案.
解答:解:∵f(x)=log2(1+x),g(x)=log2(1-x),
∴f(x)-g(x)的定义域为(-1,1)
记F(x)=f(x)-g(x)=log2
1+x
1-x

则F(-x)=log2
1-x
1+x
=log2
1+x
1-x
-1=-log2
1+x
1-x
=-F(x)
故f(x)-g(x)是奇函数.
故选A
点评:本题考查的知识点是函数奇偶性的判断,熟练掌握函数奇偶性的定义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程
y
=0.67x+54.9


现发现表中有一个数据模糊看不清,请你推断出该数据的值为
68
68

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其 中A,B两点之间的距离为5,则f(x)的递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)设平面区域D是由双曲线y2-
x24
=1
的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则目标函数z=x+y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)“a>0”是“a2<a”的(  )

查看答案和解析>>

同步练习册答案