精英家教网 > 高中数学 > 题目详情

若随机事件A在1次试验中发生的概率为P(0<P<1),用随机变量ξ表示A在1次试验中发生的次数.

(1)求方差Dξ的最大值;

(2)求的最大值.

答案:
解析:

  解析:随机变量ξ的所有可能取值为0,1,并且有P=1)=PP=0)=1-P

  从而=0×(1-P)+1×PP

  =(0-P)2×(1-P)+(1-P)2×PPP2

  (1)DξPP2

  =-(P2P+1[]4)+1[]4

  =-(P-1[]2)2+1[]4,

  ∵0<P<1,

  ∴当P时,取得最大值,最大值为

  (2)

  ∵0<P<1,∴2P

  当2P时,等号成立.

  因此,当时,取得最大值


练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年黑龙江省齐齐哈尔市高三二模理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表

摸球总次数

10

20

30

60

90

120

180

240

330

450

“和为7”出现的频数

1

9

14

24

26

37

58

82

109

150

“和为7”出现的频率

0.10

0.45

0.47

0.40

0.29

0.31

0.32

0.34

0.33

0.33

(参考数据:

(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求的值;

(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量元,求的数学期望和方差。

 

查看答案和解析>>

同步练习册答案