精英家教网 > 高中数学 > 题目详情
(2013•重庆)OA为边,OB为对角线的矩形中,
OA
=(-3,1)
OB
=(-2,k)
,则实数k=
4
4
分析:由题意可得OA⊥AB,故有
OA
AB
=0,即
OA
•(
OB
-
OA
)
=
OA
OB
-
OA
2
=0,解方程求得k的值.
解答:解:由于OA为边,OB为对角线的矩形中,OA⊥AB,∴
OA
AB
=0,
OA
•(
OB
-
OA
)
=
OA
OB
-
OA
2
=(-3,1)•(-2,k)-10=6+k-10=0,
解得k=4,
故答案为 4.
点评:本题主要考查两个向量的数量积的运算,两个向量垂直的性质,两个向量的加减法及其几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•重庆)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线
x=t2
y=t3
(t为参数)相交于A,B两点,则|AB|=
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
2
2
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
2
2
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

查看答案和解析>>

同步练习册答案