精英家教网 > 高中数学 > 题目详情
函数f(x)=2sinxcosx+sinx+cosx的最大值为
1+
2
1+
2
分析:注意sinx+cosx与sinx•cosx之间的关系,进行换元可将原函数转化成一元二次函数来解.
解答:解:令t=sinx+cosx=
2
sin(x+
π
4
)∈[-
2
2
],则 t2=1+2sinxcosx,
则y=t2+t-1=(t+
1
2
)
2
-
5
4
∈[-
5
4
,1+
2
],
即函数f(x)的最大值为 1+
2
,最小值为 -
5
4

故答案为   1+
2
点评:本题主要考查了两角和公式的化简求值,二次函数的性质.此题考查的是换元法,转化思想,在换元时要注意变量的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx+x(0<x<2),则与直线2x-y+1=0平行的函数f(x)的切线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx).
(1)求f(x)的最小正周期;
(2)当x∈[0,
π2
]
时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx)-1.
(1)求函数f(x)的最小正周期
(2)当x∈[0,
π6
]时,求函数的最小值;
(3)求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx)-1
(1)求:函数f(x)的最大值及取得最大值时的x值;
(2)在给出的直角坐标系中,用五点作图法画出函数y=f(x)一个周期内的图象
  x
  y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(cosx-sinx).
(1)当0<x<π时,求f(x)的最大值及相应的x值;                          
(2)利用函数y=sinx的图象经过怎样的变换得到f(x)的图象.

查看答案和解析>>

同步练习册答案