精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
3
x3-2x2+3x-2在区间[0,2]上最大值为
-
2
3
-
2
3
分析:求导数f′(x),由f′(x)=0得极值点,求出极值,可判断其即为最值.
解答:解:f′(x)=x2-4x+3=(x-1)(x-3),
令f′(x)=0,得x=1或x=3(舍),
当0≤x<1时,f′(x)>0,当1<x≤2时,f′(x)<0,
所以x=1为函数f(x)的极大值点,且是区间[0,2]上最大值点,
所以f(x)在区间[0,2]上最大值为f(1)=-
2
3

故答案为:-
2
3
点评:本题考查函数在闭区间上最值问题,属中档题,若函数在一区间上有唯一的极值,则同时也为最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x-lnx(x>0),则y=f(x)(  )
A、在区间(
1
e
,1),(l,e)内均有零点
B、在区间(
1
e
,1),(l,e)内均无零点
C、在区间(
1
e
,1)内无零点,在区间(l,e)内有零点
D、在区间(
1
e
,1)内有零点,在区间(l,e)内无零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3x+
3

(1)f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值;
(2)归纳猜想一般性的结论,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x-lnx,则y=f(x)
 
.(填写正确命题的序号)
①在区间(
1
e
,1),(1,e)内均有零点; ②在区间(
1
e
,1)内有零点,在区间(1,e)内无零点;
③在区间(
1
e
,1),(1,e)内均无零点; ④在区间(
1
e
,1)内无零点,在区间(1,e)内有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x       (x<1)
(x-5)2-3  (x≥1)
,则f(3-
1
2
)-f(5+3-
3
4
 
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
13x-1
+a (x≠0),则“f(1)=1”是“函数f(x)为奇函数”的
 
条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写)

查看答案和解析>>

同步练习册答案