精英家教网 > 高中数学 > 题目详情
(2009•长宁区一模)已知向量
m
=(
3
sin2x-1,cosx),
n
=(1,2cosx),设函数f(x)=
m
n

(1)求函数 f(x)的最大值和最小正周期;
(2)求函数f(x)的单调递增区间.
分析:(1)由已知中量
m
=(
3
sin2x-1,cosx),
n
=(1,2cosx),函数f(x)=
m
n
.根据平面向量的数量积公式,结合降幂公式(二倍角公式逆用)及辅助角公式,我们易将函数的解析式化为正弦型函数的形式,进而根据正弦型函数的性质,我们可以求出函数 f(x)的最大值和最小正周期;
(2)由(1)中函数的解析式,结合正弦型函数的单调性,我们易求出函数f(x)的单调递增区间.
解答:解:(1)f(x)=
3
sin2x-1+2cos2x
(2分)
=2sin(2x+
π
6
)
.        (3分)
-1≤sin(2x+
π
6
)≤1

∴fmax=2(6分)
最小正周期为T=
2
.           (8分)
(2)由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,(k∈Z)
.           (12分)
kπ-
π
3
≤x≤kπ+
π
6
,(14分)
函数递增区间为[kπ-
π
3
,kπ+
π
6
](k∈Z)
(16分)
点评:本题考查的知识点是平面向量的数量积运算,正弦型函数的图象和性质,函数图象的平移变换法则,其中根据平面向量的数量积公式和辅助角公式,求出函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•长宁区一模)已知直线m、n与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则n⊥m;
③若m⊥α,m∥β,则α⊥β.
其中真命题的个数是
2个
2个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区一模)已知α是第四象限角,tanα=-
5
12
,则sinα=
-
5
13
-
5
13

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区一模)在△ABC中,角A,B,C的对边分别为a,b,c,若a=3,c=4,B=
π
3
,则b=
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区一模)在直三棱柱ABC-A1B1C1中,∠ACB=90°,BC=CC1=a,AC=2a,
(1)求异面直线AB1与CC1所成角的大小;
(2)求多面体B1-AA1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•长宁区一模)已知函数f(x)的定义域是{x|x∈R,x≠
k
2
,k∈Z}
,且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,当0<x<
1
2
时,f(x)=3x
(1)求证:f(x+2)=f(x)且f(x)是奇函数;
(2)求当x∈(
1
2
,1)
时函数f(x)的解析式,并求x∈(2k+
1
2
,2k+1)(k∈
Z)时f(x)的解析式;
(3)当x∈(2k+
1
2
,2k+1)
时,解不等式log3f(x)>x2-(2k+2)x+2k+1.

查看答案和解析>>

同步练习册答案