精英家教网 > 高中数学 > 题目详情
(2013•朝阳区二模)已知函数f(x)=
axx2+1
+a
,g(x)=alnx-x(a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.
分析:(I)先求函数f(x)的导数,再对字母a进行分类讨论,根据导数大于0函数单调递增,导数小于0时函数单调递减可得答案.
(Ⅱ)欲证当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立,只须证明对于任意x1,x2∈(0,e],总有g(x)max<f(x)min.由(Ⅰ)可知,当a>0时,f(x)在(0,1)上单调递增,f(x)在(1,e]上单调递减,从而有f(x)min=a,同样地利用导数可得,当a>0时,g(x)在(0,a)上单调递增,g(x)在(a,e]上单调递减,从而g(x)max=g(a)=alna-a,最后利用作差法即可得到g(x)max<f(x)min
解答:解:(Ⅰ)函数f(x)的定义域为R,f′(x)=
a(1-x2)
(x2+1)2
=
a(1-x)(1+x)
(x2+1)2

当a>0时,
当x变化时,f'(x),f(x)的变化情况如下表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f'(x) - 0 + 0 -
f(x)
当a<0时,
当x变化时,f'(x),f(x)的变化情况如下表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f'(x) + 0 - 0 +
f(x)
综上所述,
当a>0时,f(x)的单调递增区间为(-1,1),单调递减区间为(-∞,-1),(1,+∞);
当a<0时,f(x)的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).
…(5分)
(Ⅱ)由(Ⅰ)可知,当a>0时,f(x)在(0,1)上单调递增,f(x)在(1,e]上单调递减,
又f(0)=a,f(e)=f(e)=
ae
e2+1
+a>a

所以f(x)min=a,
同样地,当a>0时,g(x)在(0,a)上单调递增,g(x)在(a,e]上单调递减,
所以g(x)max=g(a)=alna-a,
因为a-(alna-a)=a(2-lna)>a(2-lne)=a>0,
所以对于任意x1,x2∈(0,e],总有g(x)max=g(e)=alna-a<a=f(x)min
所以对于任意x1,x2∈(0,e],仍有x1,x2∈(0,e].
综上所述,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.…(13分)
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区二模)为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(Ⅰ)求实数a的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知等差数列{an}的公差为-2,a3是a1与a4的等比中项,则首项a1=
8
8
,前n项和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知函数f(x)=a•2|x|+1(a≠0),定义函数F(x)=
f(x),x>0
-f(x),x<0
给出下列命题:
①F(x)=|f(x)|; 
②函数F(x)是奇函数;
③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,
其中所有正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则
PA
PC1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函数f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步练习册答案