精英家教网 > 高中数学 > 题目详情
函数f(x)=(1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013
) cos2x在区间[-3,3]上的零点的个数为(  )
分析:先将原函数分解成两个函数g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013
和y=cos2x的积,分别计算这两个函数的零点.前面的用导数证明是单调增,且f(-3)f(3)<0,所以必有一个零点;后面一个函数y=cos2x的零点是四个,从而得出答案.
解答:解:设g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013
,则g′(x)=1-x+x2-x3+…+x2012=
1+x2013
1+x

在区间[-3,3]上,
1+x2013
1+x
>0,故函数g(x)在[-3,3]上是增函数,
由于g(-3)式子中右边x的指数为偶次项前为负,奇数项前为正,结果必负,即g(-3)<0,
且g(3)=1+3+(-
x2
2
+
x3
3
)+(-
x4
4
+
x5
5
)+…+(-
x2012
2012
+
x2013
2013
)>0,
故在[-3,3]上函数g(x)有且只有一个零点.
又y=cos2x在区间[-3,3]上有四个零点,且与上述零点不重复,
∴函数f(x)=(1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013
)cos2x在区间[-3,3]上的零点的个数为1+4=5.
故选C.
点评:本题主要考查了根的存在性及根的个数判断,导数的应用,考查了等价转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

可推得函数f(x)=ax2-2x+1在区间[1,2]上为增函数的一个条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2x4x+1
(a∈R).
(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx-1满足以下两个条件:
①函数f(x)的值域为[-2,+∞);
②任意x∈R,恒有f(-1+x)=f(-1-x)成立.
(1)求f(x)的解析式;
(2)设F(x)=f(-x)-kf(x),若F(x)在[-2,2]上是减函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-1,x∈R,a∈R.
(Ⅰ) 设对任意x∈(-∞,0],f(x)≤x恒成立,求a的取值范围;
(Ⅱ) 是否存在实数a,使得满足f(t)=4t2-2alnt的实数t有且仅有一个?若存在,求出所有这样的a;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2ax+1在区间[-1,2]上的最小值是f(2),则a的取值范围是
a≥2
a≥2

查看答案和解析>>

同步练习册答案