精英家教网 > 高中数学 > 题目详情
如图P是正方形ABCD的对角线BD上一点,PECF是矩形,用向量法证明:

(1)PA=EF;(2)PA⊥EF.

证明:建立如上图所示的坐标系,设正方形的边长为1,||=λ,则A(0,1),P(λ,λ),E(1,λ),F(λ,0),

=(-λ,1-λ),=(λ-1,-λ).

(1)∵||2=(-λ)2+(1-λ)22-+1,

||2=(λ-1)2+(-λ)22-+1,

∴||2=||2,故PA=EF.

(2)∵·=(-λ)(λ-1)+(1-λ)·(-λ)=0,∴,即PA⊥EF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)如图1,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点.求证:AE⊥PD.
(2)如图2,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4.求证:平面BDE⊥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且PD=AD=1.
(1)求证:MN∥平面PCD;
(2)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A,ACC1A1均为正方形,∠BAC=90°,AB=2,点D1是棱B1C1的中点.
(I)求证:A1D1⊥平面BB1C1C;
(II)已知线段A1B1上的一点P,满足直线AP与平面A1D1C所成角的正弦值为
30
15
,求
A1P
A1B1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)如图1,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点.求证:AE⊥PD.
(2)如图2,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4.求证:平面BDE⊥平面BEC.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳市科学高中高一(上)期末数学试卷(国际体系)(解析版) 题型:解答题

(1)如图1,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点.求证:AE⊥PD.
(2)如图2,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4.求证:平面BDE⊥平面BEC.

查看答案和解析>>

同步练习册答案