精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x+asinx
(Ⅰ)当a=2时,求函数f(x)的值域;
(Ⅱ)若函数f(x)的最小值为-6,求实数a的值;
(Ⅲ)若a∈R,求函数f(x)的最大值.
(Ⅰ)当a=2时,f(x)=cos2x+2sinx=-sin2x+2sinx+1=-(sinx-1)2+2,
由-1≤sinx≤1,得到-2≤f(x)≤2,
则函数f(x)的值域为[-2,2],
(Ⅱ)f(x)=-sin2x+asinx+1=-(sinx-
a
2
2+
a2
4
+1,
∴f(x)min=
a(a≤0)
-a(a>0)

∵f(x)的最小值为-6,
则a=±6;
(Ⅲ)f(x)=-sin2x+asinx+1=-(sinx-
a
2
2+
a2
4
+1,
则f(x)max=
-a(a<-2)
a2
4
+1(-2≤a≤2)
a(a>2)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案