精英家教网 > 高中数学 > 题目详情
过点A(1,2)且垂直于直线2x+y-5=0的直线方程为(  )
A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0
∵直线2x+y-5=0的斜率等于-2,故所求的直线的斜率等于
1
2

故过点A(1,2)且垂直于直线2x+y-5=0的直线方程为 y-2=
1
2
(x-1),即x-2y+3=0,
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4
(I)若直线l过点A(4,0),且被圆C1截得的弦长为2
3
,求直线l的方程;
(II)设P(a,b)为平面上的点,满足:存在过点P的两条互相垂的直线l1与l2,l1的斜率为2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求满足条件的a,b的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
9
=1
上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点(0,-
4
17
)
且平行于x轴的直线上一动点,满足
ON
=
OA
+
OB
(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足.
(1)求线段PP′中点M的轨迹C的方程.
(2)过点Q(一2,0)作直线l与曲线C交于A、B两点,设N是过点(-
4
17
,0),且以言
a
=(0,1)
为方向向量的直线上一动点,满足
ON
=
OA
+
OB
(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线Z的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B、C是抛物线x2=2py(p>0)上的两点,O为坐标原点,若|OB|=|OC|,且△BOC的垂心为抛物线的焦点.
(1)求直线BC的方程;
(2)设直线BC与Y轴相交于A点,Q为抛物线上的动点,eQ以Q为圆心且过点A,问是否存在定直线平行于x轴,且被eQ截得的弦长为定值?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于x轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>

同步练习册答案