精英家教网 > 高中数学 > 题目详情

如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC ;

(2).设平面ECD与半圆弧的另一个交点为F。

①求证:EF//AB;

②若EF=1,求三棱锥E—ADF的体积

 

 

 

 

 

 

 

(1)∵是半圆上异于的点,∴

又∵平面平面,且

由面面垂直性质定理得平面

平面

平面

平面

                                                     ………4分

(2) ①由,得∥平面

又∵平面平面

∴根据线面平行的性质定理得,又

                                                      ………8分

                            ………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,已知矩形ABCD,AB=2AD=2a,E是CD边的中点,以AE为棱,将△DAE向上折起,将D变到D′的位置,使面D′AE与面ABCE成直二面角(图2).
(1)求直线D′B与平面ABCE所成的角的正切值;
(2)求证:AD′⊥BE;  
(3)求点C到平面AE D′的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知矩形ABCD,AB=2AD=2a,E是CD边的中点,以AE为棱,将△DAE向上折起,将D变到D′的位置,使面D′AE与面ABCE成直二面角(图2).
(1)求直线D′B与平面ABCE所成的角的正切值;
(2)求证:AD′⊥BE;
(4)求异面直线AD′与BC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一个动点.
(1)若PB=PF,求异面直线PC与AB所成的角的余弦值;
(2)若二面角P-AC-B的大小为300,求证:FB⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形,EF分别是ADBC边上的点,EFABEFAC于点O,以EF为棱把它折成直二面角A-EF-D后,求证:不论EF怎样移动,∠AOC是定值.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省宜昌一中、枝江一中、当阳一中三校联合体高三2月联考数学试卷(文科)(解析版) 题型:解答题

如图,直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一个动点.
(1)若PB=PF,求异面直线PC与AB所成的角的余弦值;
(2)若二面角P-AC-B的大小为30,求证:FB⊥平面PAC.

查看答案和解析>>

同步练习册答案