精英家教网 > 高中数学 > 题目详情
精英家教网直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.
(Ⅰ)求异面直线AC1与BC所成的角余弦值;
(Ⅱ)求证:BD⊥平面AC1
(Ⅲ)求二面角B-AC1-C的正切值.
分析:(1)先通过平移将两条异面直线平移到同一个起点C1,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;
(2)由BD垂直面AC1中两相交直线,根据线面垂直的判定定理即可证得线面垂直;
(3)先找出二面角的平面角,再在直角三角形中求出正切值即可.
解答:精英家教网解:(Ⅰ)在直四棱柱ABCD-A1B1C1D1中,BC∥B1C1
∠AC1B1是异面直线AC1与BC所成的角(2分)
在△AC1B1中,AC1=AB1=2
3

C1B1=2
2
,cos∠AC1B1=
6
6

故异面直线AC1与BC所成的角的余弦值为
6
6
(4分)
(Ⅱ)因为AD=DC,AB=BC可得BD⊥AC(垂直平分线)(5分)
又CC1⊥平面ABCD,AC为AC1平面ABCD上的射影(7分)
所以BD⊥面AC1(8分)
(Ⅲ)设AC∩BD=O,由(Ⅱ)得BD⊥平面ACC1,过O作OH⊥AC1,垂足为
H,连接BH,则BH⊥AC1,∠OHB为二面角B-AC1-C的平面角(11分)
在Rt△OBH中,OB=
6
,OH=
6
3
?tan∠OHB=3(13分)
故二面角B-AC1-C的正切值为3
点评:本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直四棱柱ABCD-A′B′C′D′中,底面ABCD为梯形,BC∥AD,AA′=AB=
2
,AD=2BC=2,直线AD与面ABB'A'所成角为45°.
(Ⅰ)求证:DB⊥面ABB'A';
(Ⅱ)求证:AD'⊥B'C;
(Ⅲ)求二面角D-AB'-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
14
BB′
,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直四棱柱ABCD-A′B′C′D′的底面是菱形,∠ABC=60°,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在高为1的直四棱柱ABCD-A'B'C'D'中,底面ABCD是等腰梯形,AB=BC=CD=1,AD=2. 
(1)求异面直线BC'与CD'所成的角;
(2)求被截面ACD'所截的两部分几何体的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县一模)如图,在直四棱柱ABCD-A'B'C'D'中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分别是棱A1B1、AB、A1D1的中点.
(1)证明:直线GE⊥平面FCC1
(2)求二面角B-FC1-C的大小.

查看答案和解析>>

同步练习册答案