数列
的前
项和为
,若数列
的各项按如下规律排列:
,
,
,
,
,
,
,
,
,
,…,
,
,…,
,…有如下运算和结论:
①
; ②
;
③数列
,
,
,
,…是等比数列
④数列
,
,
,
,…的前
项和为
;
⑤若存在正整数
,使
,
,则
.
在后面横线上填写出所有你认为正确运算结果或结论的序号______________.
科目:高中数学 来源:2010年重庆市高考数学理科适应性考试试题 题型:解答题
(12分) 设数列
的前
项和为
,对一切
,点
都在函数
的图象上. (1) 求数列
的通项公式; (2) 将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;(3)设
为数列
的前
项积,若不等式
对一切
都成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省、鹰潭一中高三4月联考理科数学试卷(解析版) 题型:解答题
设数列
的前
项和为
,且满足![]()
(1)求数列
的通项公式;
(2)在数列
的每两项之间都按照如下规则插入一些数后,构成新数列
,在
两项之间插入
个数,使这
个数构成等差数列,求
的值;
(3)对于(2)中的数列
,若
,并求
(用
表示).
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市徐汇区高三第一学期学习能力诊断卷理科数学 题型:解答题
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,
第3小题满分6分.
设
把三阶行列式
中第一行第二列元素的余子式记为
,且关于
的不等式
的解集为
。各项均为正数的数列
的前
项和为
,点列
在函数
的图象上。
(1)求函数
的解析式;
(2)若
,求
的值;
(3)令
,求数列
的前
项中满足
的所有项数之和.
查看答案和解析>>
科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(上海) 题型:解答题
若有穷数列
(
是正整数),满足
即![]()
(
是正整数,且
),就称该数列为“对称数列”。
(1)已知数列
是项数为7的对称数列,且
成等差数列,
,试写出
的每一项
(2)已知
是项数为
的对称数列,且
构成首项为50,公差为
的等差数列,数列
的前
项和为
,则当
为何值时,
取到最大值?最大值为多少?
(3)对于给定的正整数
,试写出所有项数不超过
的对称数列,使得
成为数列中的连续项;当
时,试求其中一个数列的前2008项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com