精英家教网 > 高中数学 > 题目详情

如图1,边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△ADE,△CDF,△BEF折起,使A,C,B三点重合于G,所得三棱锥G-DEF的俯视图如图2,则该三棱锥正视图的面积为(  )

A.                     B.

C.                  D.

B.设正视图的高为h,VG-DEF=VD-GEF=××××h=××1×1×2,得h=,

所以正视图S=××=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,边长为2的正六边形ABCDEF的中心在原点,点F、C在x轴上.
(1)求CD边所在的直线方程;
(2)若直线l与边CD相交,且平分该六边形的面积,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有
(1)(2)(3)
(1)(2)(3)
.(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正六边形ABCDEF的中心在原点,点F、C在x轴上.
(1)求CD边所在的直线方程;
(2)若直线l与边CD相交,且平分该六边形的面积,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正六边形ABCDEF的中心在原点,点F、C在x轴上.
(1)求CD边所在的直线方程;
(2)若直线l与边CD相交,且平分该六边形的面积,求直线l的斜率的取值范围.
精英家教网

查看答案和解析>>

科目:高中数学 来源:《第2章 直线与方程》2011年单元测试卷(解析版) 题型:解答题

如图,边长为2的正六边形ABCDEF的中心在原点,点F、C在x轴上.
(1)求CD边所在的直线方程;
(2)若直线l与边CD相交,且平分该六边形的面积,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案