精英家教网 > 高中数学 > 题目详情
3.已知$\overrightarrow{a}$=(1,0),|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 由条件利用两个向量的数量积的定义,求得cosθ的值,可得设$\overrightarrow{a}$与$\overrightarrow{b}$夹角θ的值.

解答 解:已知$\overrightarrow{a}$=(1,0),|$\overrightarrow{b}$|=$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|,
设$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,θ∈[0,π],
则${\overrightarrow{a}}^{2}$+${\overrightarrow{b}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$=${\overrightarrow{a}}^{2}$,∴${\overrightarrow{b}}^{2}$=2$\overrightarrow{a}$•$\overrightarrow{b}$,
∴2=2•1•$\sqrt{2}$cosθ,∴cosθ=$\frac{\sqrt{2}}{2}$,∴θ=$\frac{π}{4}$,
故选:C.

点评 本题主要考查两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若复数z满足iz=1+3i,则复数z的虚部为(  )
A.-1B.-iC.1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)证明:x∈[0,1]时,$\frac{{\sqrt{2}}}{2}x≤sinx≤x$
(2)若不等式${x^2}+{m^2}x+2(x+2)cosx≤-\frac{1}{2}{x^3}+3mx+4$对x∈[0,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(a,b2-b+$\frac{7}{3}$),$\overrightarrow{n}$=(a+b+2,1),$\overrightarrow{μ}$=(2,1).
(1)若$\overrightarrow{m}$∥$\overrightarrow{μ}$,求a的最小值;
(2)求证:$\overrightarrow{m}$ 与$\overrightarrow{n}$的夹角不是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在底面半径为2母线长为4的圆锥中内接一个高为x的正四棱柱,
(1)用x表示正四棱柱的侧面积;
(2)x为何值时,正四棱柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.当四边形OACB面积最大时,∠AOB=150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x+y+z=1时,则x2+y2+z2的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{1}{27}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面的茎叶图记录了甲、乙两名同学在10次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为76分,乙得分的平均数是75分,则下列结论正确的是(  )
A.$\overline{x_甲}=76,\overline{x_乙}=75$B.乙同学成绩较为稳定
C.甲数据中x=3,乙数据中y=6D.甲数据中x=6,乙数据中y=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在空间直角坐标系Oxyz中,已知A(1,-2,3),B(2,1,-1),若直线AB交平面yoz于点C,则点C的坐标为(0,-5,-5).

查看答案和解析>>

同步练习册答案