精英家教网 > 高中数学 > 题目详情
精英家教网在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:
(1)平面BDO⊥平面ACO;
(2)EF∥平面OCD.
分析:(1)证明平面BDO⊥平面ACO,只需证明平面BD0内的直线BD,垂直平面ACO内的两条相交直线OA、AC即可;
(2)取OD中点M,连接KM、CM,证明EF平行平面OCD内的直线CM,即可证明EF∥平面OCD.
解答:精英家教网证明:(1)∵OA⊥平面ABCD,BD?平面ABCD,所以OA⊥BD,
∵ABCD是菱形,∴AC⊥BD,又OA∩AC=A,
∴BD⊥平面OAC,
又∵BD?平面OBD,∴平面BD0⊥平面ACO.
(2)取OD中点M,连接KM、CM,则ME∥AD,ME=
1
2
AD

∵ABCD是菱形,∴AD∥BC,AD=BC,
∵F为BC的中点,∴CF∥AD,CF=
1
2
AD

∴ME∥CF,ME=CF.
∴四边形EFCM是平行四边形,∴EF∥CM,
∴EF∥平面OCD
点评:本题考查平面与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、如图,在四棱锥O-ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.
求证:(Ⅰ)直线MC∥平面OAB;
(Ⅱ)直线BD⊥直线OA.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,OA⊥底面ABCD,OA=2,M为OA的中点,P为CD的中点.
(1)求证:CD⊥平面MAP;
(2)求证:MP∥平面OBC;
(3)求三棱锥M-PAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,且OA=2,M为OA的中点,N为BC的中点.
(1)证明:直线MN∥平面OCD;
(2)求点N到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
(Ⅰ)求四棱锥O-ABCD的体积;
(Ⅱ)求异面直线OB与MD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的大小;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

同步练习册答案