精英家教网 > 高中数学 > 题目详情
长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为
 
分析:本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点到O的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.
解答:解:精英家教网根据几何概型得:
取到的点到O的距离大于1的概率:
p=
d
D
=
圆外部分的面积
矩形的面积

=
2-
π
2
2×1
=1-
π
4

故答案为:1-
π
4
点评:本题主要考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方形ABCD中,AB=2,AD=1,则
AC
CD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(1)求证:AD⊥BM;
(2)点E是线段DB上的一动点,当二面角A-EM-D大小为
π
3
时,试求
DE
DB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在长方形ABCD中,AB=
3
,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方形ABCD中,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点,取到的点到点O的距离不大于1的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)在图(1)所示的长方形ABCD中,AD=2AB=2,E、F分别为AD、BC的中点,M、N两点分别在AF和CE上运动,且AM=EN=a(0<a<
2
)
.把长方形ABCD沿EF折成大小为θ的二面角A-EF-C,如图(2)所示,其中θ∈(0,
π
2
]

(1)当θ=45°时,求三棱柱BCF-ADE的体积;
(2)求证:不论θ怎么变化,直线MN总与平面BCF平行;
(3)当θ=900a=
2
2
.时,求异面直线MN与AC所成角的余弦值.

查看答案和解析>>

同步练习册答案