精英家教网 > 高中数学 > 题目详情
已知=(1,-3),=(-1,3),要使|t+|的值最小,则t的值为(    )

A.-1            B.1                     C.              D.

B

解析:∵|t+|=|(t-1,-3t+3)|=.

∴当t=1时,|t+|取最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-
1
n+3
)n
1
2
,求证(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出满足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算.已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{1,3}⊆A,且{1,3}∪A={1,3,5},则集合A=
{1,3,5}
{1,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知1+2+3+…+n=
n(n+1)
2
(n∈N*)
,对于求1+2+3+…+100的一个算法:
第一步:取n=100;
第二步:
计算
100×101
2
计算
100×101
2

第三步:输出计算结果.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知1+2+3+…+n-
1
2
n2+
1
2
n,12+22+32+…+n2=
1
3
n3+
1
2
n2+
1
6
n,13+23+33+…+n3=
1
4
n4+
1
2
n3+
1
4
n2
,14+24+34+…+n4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n…,1k+2k+3k+…+nk=ak+1nk+1+aknk+ak-1nk-1+ak-2nk-2+…a1n+a0
可以猜想,当k≥2(k∈N*)时,ak+1=
1
k+1
ak=
1
2
ak-1
=
6+
(k-2)(7-k)
2
6+
(k-2)(7-k)
2

查看答案和解析>>

同步练习册答案