精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1、F2,离心率e=
1
2
,直线y=x+2经过左焦点F1
(1)求椭圆C的方程;
(2)若P为椭圆C上的点,求∠F1PF2的范围.
分析:(1)由已知可求F1,进而可求c,结合e=
c
a
=
1
2
可求a,最后由b2=a2-c2可求b,即可求解椭圆的方程
(2)当P在椭圆的右顶点时,易得∠F1PF2=0;当P不在椭圆的右顶点时,由定义可知,8=PF1+PF2,利用基本不等式可求
1
PF1•PF2
的范围,然后在△F1PF2中,由余弦定理可得可求cos∠F1PF2的取值范围,进而可求角的范围
解答:解:(1)直线y=x+2与x的交点的坐标为(-2,0),则F1的坐标为(-2,0).…(2分)
设焦距为2c,则c=2.∵e=
c
a
=
1
2
∴a=4,b2=a2-c2=12.…(5分)
则椭圆的方程为
x2
16
+
y2
12
=1
.…(6分)
(2)当P在椭圆的右顶点时,∠F1PF2=0(7分)
当P不在椭圆的右顶点时,由定义可知,8=PF1+PF2≥2
PF1•PF2

1
PF1•PF2
1
16
当且仅当PF1=PF2时等号成立
△F1PF2中,由余弦定理可得cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|×|PF2|
=
(|PF1|+|PF2|)2-2|PF1|×|PF2|-|F1F2|2
2|PF1|×|PF2|
(9分)
=
48-2|PF1|×|PF2|
2|PF1|×|PF2|
=
24
|PF1|×|PF2|
-1≥
24
16
-1=
1
2
,…(13分)
0<∠F1PF2
π
3

由上述可得∠F1PF2的取值范围为[0,
π
3
]
.…(14分)
点评:本题主要考查了利用椭圆的性质求解椭圆方程,余弦定理在求解三角形中的应用,其中(2)的求解具有一定的综合性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案