精英家教网 > 高中数学 > 题目详情
在计算“(n∈N*)”时,某同学学到了如下一种方法:
先改写第K项:
由此得
相加,得
类比上述方法,请计算“(n∈N*)”,其结果为(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计算人数的时间,即n=1;9点20分作为第二个计算人数的时间,即n=2;依此类推…,把一天内从上午9点到晚上24点分成了90个计算单位.
对第n个时刻进入园区的人数f(n)和时间n(n∈N*)满足以下关系(如图1):f(n)=
3600(1≤n≤24)
3600•3
n-24
12
(25≤n≤36)
-300n+21600(37≤n≤72)
0(73≤n≤90)
,n∈N*
对第n个时刻离开园区的人数g(n)和时间n(n∈N*)满足以下关系(如图2):g(n)=
0(1≤n≤24)
500n-12000(25≤n≤72)
5000(73≤n≤90)
,n∈N*
(1)试计算在当天下午3点整(即15点整)时,世博园区内共有多少游客?
(2)请求出当天世博园区内游客总人数最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算“1×2+2×3+…n(n+1)”时,先改写第k项:
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政府,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变成a2(1+r)n-2,….以Tn表示到第n年末所累计的储备金总额.
(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;
(Ⅱ)求证Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

科目:高中数学 来源:江西省临川二中、新余四中2012届高三第一次联考数学文科试题 题型:022

在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(x+2)-(k-1)k(k+1)],由此得

1×2=(1×2×3-0×1×2)

2×3=(2×3×4-1×2×3)

n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]

相加,得

1×2+2×3+…+n(n+1)=n(n+1)(n+2)

类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为________.

查看答案和解析>>

同步练习册答案